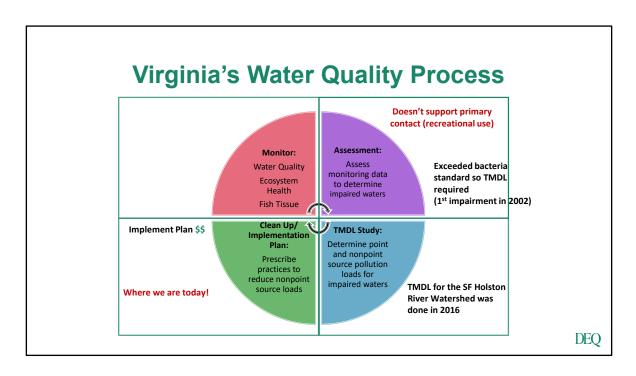


2nd Stakeholder Meeting for the development of a Clean Up Plan (Implementation Plan) for the South Fork Holston River Watershed


April 26, 2023 DEQ Southwest Regional Office

Stephanie Kreps
TMDL Nonpoint Source Coordinator
Virginia Department of Environmental Quality

Introductions

What do we hope to accomplish today?

- Remind us where we are in the process
- Discuss proposed BMPs, costs, timeline and priority areas to reduce bacteria in the watershed
 - Residential septic/pet waste
 - Agriculture
- Next steps

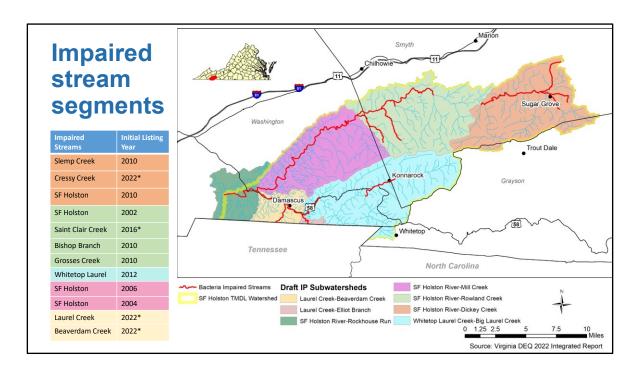
Assessment: The Clean Water Act (CWA) that became law in 1972 requires that all U.S. streams, rivers, and lakes meet certain water quality standards. The CWA also requires that states conduct monitoring to identify waters that are polluted or do not otherwise meet standards. Through this required program, the state of Virginia has found that many stream segments do not meet state water quality standards for protection of the six beneficial uses:

1- recreation/swimming (boating/swimming)

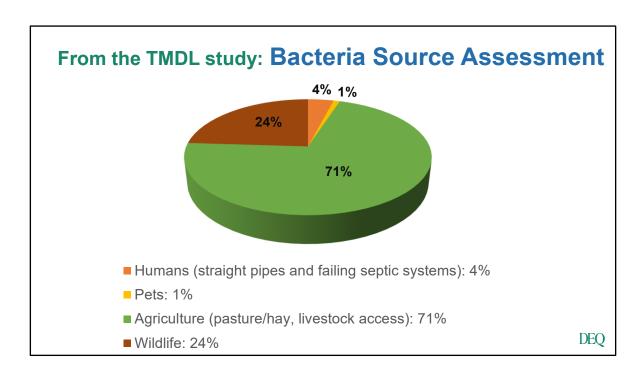
4- fish consumption 5- shellfish consumption

2- aquatic life

3- wildlife


6- public water supply (drinking)

<u>TMDL Study:</u> Maximum amount of a pollutant that a waterbody can receive and still meet water quality standards. When streams fail to meet standards, the stream is "listed" in the current Section 303(d) report as requiring a Total Maximum Daily Load (TMDL). Section 303(d) of the CWA and the U.S. Environmental Protection Agency's (EPA) Water Quality Management and Planning Regulation (40 CFR Part 130) both require that states develop a Total Maximum Daily Load (TMDL) for each pollutant.


Load allocation= nonpoint sources

Waste load allocation= point sources

Clean Up/IP: Once a TMDL is developed and approved by EPA, measures must be taken to reduce pollution levels in the stream. Virginia's 1997 Water Quality Monitoring, Information and Restoration Act (WQMIRA) states in section 62.1-44.19:7 that the "Board shall develop and implement a plan to achieve fully supporting status for impaired waters". The Implementation Plan (IP) describes control measures, which can include the installation of best management practices (BMPs), which should be implemented in a staged process. Through this process, states establish water-quality based controls to reduce pollution and meet water quality standards.

- 12 impaired segments within the SF Holston watershed
- * New impaired segments since the TMDL was completed in 2016

Not addressing wildlife in the Implementation Plan

Residential Septic: BMPs

- 1. Number of straight pipes- reduced to 1%
- 2. Updated totals in Laurel Creek to only include VA:

Sub-watershed	Unsewered houses	Estimated failing septic systems	Estimated straight pipes	
Laurel Creek – Beaverdam Creek	357	11	4	Is this more
Laurel Creek – Elliot Branch	0	0	0	realistic?
SF Holston River – Rockhouse Run	175	6	2	
SF Holston River – Mill Creek	934	30	9	
SF Holston River – Rowland Creek	2,215	70	22	
SF Holston River – Dickey Creek	758	24	8	
Whitetop Laurel Creek – Big Laurel Creek	621	20	6	
Total	5,060	161	51	DEQ

Laurel Creek- Beaverdam Creek used to have 1,060 unsewered, 32 failing systems, 11 straight pipes

Residential Septic: BMPs

- 3. More replacements (80%) than repairs (20%)
- 4. More Conventional (60%) than Alternative (40%) systems needed
- 5. 50% repairs would not require a permit
- 6. Third of households would do septic pumpout
- 7. Total repairs and replacements (within VA portion only):

BMP (Cost-share codes in parentheses)	Units	Extent	
Onsite sewage system repair w/ permit (RB-3)	Repair	16	
Full inspection and non-permitted onsite sewage system repair (RB-3M)	Repair	16	la Abia
Onsite sewage system installation/replacement (RB-4)	System	54	Is this reasonable?
Onsite sewage system installation/replacement w/ pump (RB-4P)	System	54	reasonable:
Alternative sewage system (RB-5)	System	72	
Septic tank pump-out (RB-1)	Pump-out	1,668	DEQ

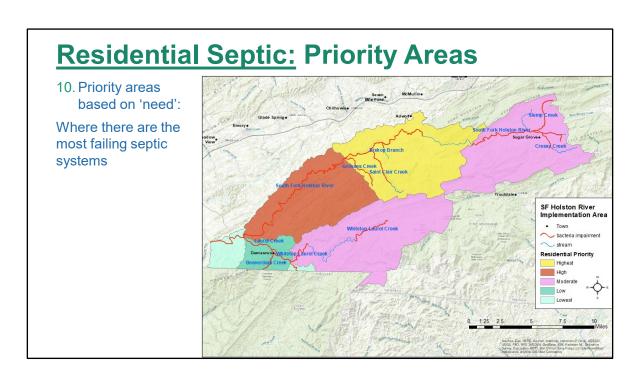
Residential Septic: Costs

8. Overall implementation costs:

Reasonable?

	Cost-share			Number	
Practice	code	Units	Unit cost	of Units	Total
Septic tank pump-out	RB-1	system	\$400	1,668	\$667,200
Septic tank system repair	RB-3	repair	\$5,000	16	\$80,000
Septic system inspection and non- permitted repairs	RB-3M	repair	\$3,000*	16	\$48,000
Septic tank system installation or replacement	RB-4	system	\$8,000	54	\$432,000
Septic tank system installation/replacement w/ pump	RB-4P	system	\$12,000	54	\$648,000
Alternative waste treatment system	RB-5	system	\$24,000	72	\$1,728,000
TOTAL ESTIMATED COST					\$3,663,200

 $^{^{\}ast}$ Estimated cost/unit varies between \$2,000 - \$4,000 depending on lifespan


Residential Septic: Timeline

Focus on Stage 1 since that gets us to the Delisting Goal

9. Staged implementation goals: How long is each stage?

			50%	50%	
Description	BMP code	Units	Stage 1	Stage 2	Total
Onsite sewage system repair w/ permit	RB-3		8	8	16
Full inspection and non- permitted onsite sewage system repair	RB-3M	repair	8	8	16
Onsite sewage system installation/replacement	RB-4		27	27	54
Onsite sewage system installation/replacement w/ pump	RB-4P	system	27	27	54
Alternative sewage system	RB-5		36	36	72
Septic tank pump-out	RB-1	pump-out	834	834	1,668

- 9. How many years needed to implement Stage 1 and Stage 2? Current Stage 1 will get us to the delisting goal (based on monitoring data) vs Stage 2 which gets us to the TMDL goal (based on modeling). Other IPs have 1-5yrs or 1-10yrs (Stage 1) and 1-5 yrs or 1-10yrs (Stage 2)= 10-20 years.
- Based on 50:50 of #BMPs per stage. Would you prefer to see more practices done sooner (so more in Stage 1)? Is that realistic?

10. In the last meeting, it was mentioned to focus in the Damascus/Sugar Grove areas first but to get at water quality improvements sooner, these are the priority areas that will address the bacteria load quickest/first. Thoughts?

Pet Waste: BMPs

11. Total BMPs, with focus on Damascus area and Virginia Creeper Trail:

BMP (Cost-share codes in parentheses) Pet waste disposal station (PW-1)	Units Station	Extent 3	
Wastewater treatment system for confined canine facilities (PW-3)	System	2	Is this reasonable?
Pet waste education program	Program	1	

Need more than 1 Education program?

Pet Waste: Costs

12. Overall implementation costs:

Reasonable?

	Cost-share			Number	
Practice	code	Units	Unit cost	of Units	Total
Pet waste disposal station	PW-1	station	\$2,000	3	\$6,000
Large scale pet waste treatment system	PW-3	system	\$10,000	2	\$20,000
Pet waste education program	N/A	program	\$4,000	1	\$4,000
TOTAL ESTIMATED COST					\$30,000

Pet Waste: Timeline

Focus on Stage 1 since that gets us to the Delisting Goal

13. Staged implementation goals: How long is each stage?

			50%	50%	
Description	BMP code	Units	Stage 1	Stage 2	Total
Pet waste disposal station	PW-1	station	2	1	3
Large scale pet waste treatment system	PW-3	system	1	1	2
Pet waste education program	N/A	program	1	0	1

- 13. How many years needed to implement Stage 1 and Stage 2? Current Stage 1 will get us to the delisting goal (based on monitoring data) vs Stage 2 which gets us to the TMDL goal (based on modeling)
- Based on 50:50 of #BMPs per stage. Would you prefer to see more practices done sooner (so more in Stage 1)? Is that realistic?

Agriculture: BMPs

Focus on Stage 1 since that gets us to the Delisting Goal

14. 50:50 for Stage 1 and 2 meets delisting goal

15. Fencing needs (includes what's been done since TMDL done in 2016):

	Estimated total length of	Approximate fencing	50% Fencing st	50% till needed	
Sub-watershed	streambank in pasture/hay	installed to date	Stage 1	Stage 2	
	(feet)	(feet)	(feet)	(feet)	
Laurel Creek – Beaverdam Creek	65,998	22,000	20,585	20,147	
Laurel Creek – Elliot Branch	0	0	0	0	
SF Holston River – Rockhouse Run	106,822	34,670	33,673	33,397	Is this
SF Holston River – Mill Creek	360,011	216,435	63,771	69,265	reasonable
SF Holston River – Rowland Creek	201,605	97,900	44,863	51,070	
SF Holston River – Dickey Creek	194,991	0	91,646	89,696	
Whitetop Laurel Creek – Big Laurel Creek	37,202	2,100	16,498	16,147	
Total	966,629	373,305	271,036	279,722	DEC
		(39%)	(28%)	(29%)	

50:50 for Stage 1 and 2

Agriculture: BMPs & Timeline Focus on Stage 1 since that gets us to the Delisting Goal 16. Estimated 90% of fencing using wide buffers; 10% narrow buffers 17. Exclusion fencing needed to reduce bacteria from direct deposition: feet feet systems feet systems 0 0 0 0 Are these 33,673 3,367 30,306 20 estimates 63.771 6.377 57.394 38 44,863 4,486 40,377 27 reasonable? 91.646 9.165 82.481 55 16,498 1,650 1 14,848 10 243.932 271.036 27.104 20,147 2,015 18,132 12 How long is 0 0 0 each 33,397 3,340 30,057 stage? 69.265 6.926 62,339 42 51,070 5,107 45,963 31 89,696 8.970 80,726 54 16,147 14,532 279,722 27,973 18 251,749 169 DEO 550,758

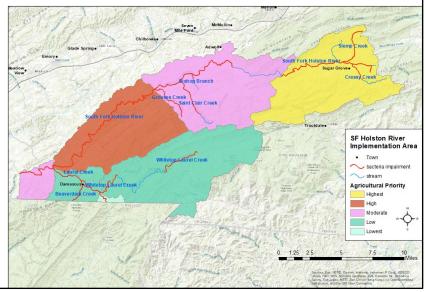
These are the practices that need to be done. Is this reasonable? How long would each stage need to be to complete BMPs?

Agriculture: BMPs & Timeline Focus on Stage 1 since that gets us to the Delisting Goal 18. Land based BMPs needed to reduce bacteria from pasture and cropland: Stage 1 Stage 2 Total BMP (Cost-share codes in parentheses) Acres Extension of watering system (SL-7) 1,383 1,383 2,766

2,766 Improved pasture management (SL-10) 19,149 2,766 21,915 Are these estimates Afforestation of crop, hay and pasture land (FR-1) 0 6,371 6,371 reasonable? Permanent vegetative cover on critical areas (SL-11) 64 64 Cover crop (SL-8B, SL-8H) 30 31 61 How long is Animal waste control facility (WP-4, WP-4B, WP-4FP, WP-4LL, WP-7 each 1 8 stage? Roof runoff management (WQ-12) 2 2 0 Water control structure (WP-1) – acres treated 8,766 8,766 0 DEO

These are the practices that need to be done. Is this reasonable? How long would each stage need to be to complete BMPs?

Will need to look into Continuing Conservation Initiative (CCI) practices and whether or not could be funded by 319(h).


19. Overall implementation cos	sts:			R	Reasonab	e
Practice	Cost-share code	Units	Unit cost	Number of Units	Total	
Stream exclusion with narrow width buffer and grazing land management	SL-6N	system	\$40,000	18	\$720,000	
Stream exclusion with wide width buffer and grazing and management	SL-6W, CRSL-6	system	\$50,000	166	\$8,300,000	
Stream protection fencing with narrow width buffer	WP-2N	system	\$10,000	17	\$170,000	
Stream protection fencing with wide width buffer	WP-2W	system	\$10,000	165	\$1,650,000	
Exclusion fence maintenance (10 yrs)	N/A	feet	\$3.25	275,379	\$894,982	
Extension of watering system	SL-7	acres	\$250	2,766	\$691,500	
mproved pasture management	SL-10	acres	\$75	21,915	\$1,643,625	
Critical area stabilization	SL-11	acres	\$1,800	64	\$115,200	
Afforestation of crop, hay and pasture land	FR-1	acres	\$500	6,371	\$3,185,500	
Cover crop	SL-8B, SL-8H	acres	\$80	61	\$4,880	
Animal waste control facility	WP-4, WP-4B, WP-4FP, WP-4LL, WP-4SF	system	\$100,000	8	\$800,000	
Roof runoff management	WQ-12	system	\$1,450	2	\$2.900	

Used cost sheets provided by Holston River SWCD and Evergreen SWCD

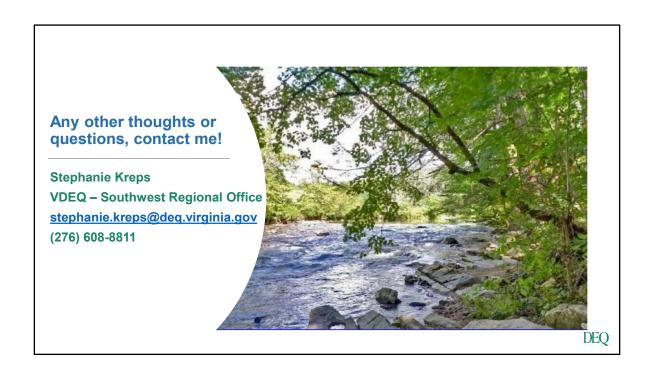
Agriculture: Priority Areas

20. Priority areas based on 'need':

Where there are high bacteria loads, high agriculture practices and impaired segments

Technical Assistance

- 21. One (1) full-time employee (FTE) for each SWCD for Ag BMPs?
- 22. One (1) full-time employee (FTE) for each SWCD for Residential Septic/Pet Waste BMPs?


Overall Summary

23. Total BMP implementation costs by stage:

	Cost by	Stage	
	Stage 1	Stage 2	
BMP Application	(Years 1–5)	(Years 6-10)	Total
Agricultural	\$7,624,839	\$11,868,648	\$19,493,487
Residential	\$1,819,600	\$1,813,600	\$3,633,200
TOTAL ESTIMATED COST	\$9,444,439	\$13,682,248	\$23,126,687

Next Steps	
	Tentative Date
First Public Meeting	November 10, 2022
Thist i ablic Meeting	(Public comment period November 10- December 12, 2022)
Stakeholder Meetings	
# 1	January 25, 2023
# 2	April 26, 2023
Final Public Meeting	May 2023- date?
Tillar rablic Wiccang	(Public comment period 30 days after Final Public Meeting)
EPA Approval	June/July 2023?
Zi / (/ppiovai	Available for DEQ 319 funded projects in 2024?

Final public meeting will focus on draft IP— any other feedback on what is being proposed?

